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1. Let hbe a plane, connected domain with smooth boundaries containing a slit r == 

1 Z; = 0, a < x1 < b}. The equations of plane strain in Cartesian coordinates are obtained 
the equations of the three-dimensional problem /4/ by substituting the conditions (every- 

where henceforth i, j = 1, 2) 

ASW'TOTICS NEAR THE TIP OF A CRACK OF THE STATE OF STRESS 

AND STRAIN OF INHOMOGENEOUSLY AGING BODIES* 

V-P. ZHURAVLHV, S.A. NAZAROV and B.A. SHOIKHET 

The asymptotic behavior is studied of the solution of the creep theory problem of 
inhomogeneously aging bodies in the neighborhood of a crack tip. Asymptotic re- 
presentations of the stresses and displacements are obtained. Itturns out that 
these representations for the stresses agree with the correspondong representations 
in classical ehsticity theory, while they differ for the displacements by addition- 
al terms. The formulas obtained for the displacements extend the results in /l- 3/ 
in which the agreement between the asymptotics forthe stresses in creep and elastic- 
ity problems isconfirmed for a homogeneous material. 

ui (tt Xlr X29 x3) = 4 (t, Xl, I*), UJ = 0; Eij = Eij (“)s (ui.j + uj,i)/?. 

0jj.j (t, X) + fi (TV x) = 0, x En\ r 

si j (4 xl 
= eij (tg X) - f RI [t $- X (X)7 7 + X (X)7 X] eij (‘C, X) dT 

zC[t+ x(x), xl 
" 

t 
5 (6 x) 

E* 1: +x (XL xl 
= e (t, x) - 5 R2 [t + x(x), T + x (x), x] e (z, x) dz 

e = (ell + e&3, Eij = 6yje f eij, (Jij = 6ijO + Sij 

Lki = 0, X E S,; Gij?lj = Pi (t, X), x C Sp; S, U Sp = 632 

fJ12 = gl* (t, x), $2 = gz*((t, x), x E r+ 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

Here IQ, ai,, .Q, are the Cartesian components of the displacement, stress, and strain, re- 

spectively, sil, elf are the components of the stress and strain deviators, IJ,~ are their spher- 

ical parts, E, (t,s), &(t, T, x)are the volume expansion modulus and the relaxation kernel under 
multilateral tension (compression), G(t,x), Rl(t,r, X) are the shear modulus and the relaxation 

kernel under shear, x(x) is a function of inhomogeneous aging characterizing the law of varia- 
tion of material growth, and ff, PI, gi* are the volume and surface loads. 

We shall consider the solution in an arbitrary time segment [O, T]. Let us formulatethe 
constraints under which the solution of the creep problem exists. For Vt let the loads firPi, 
gifbe square summable and piecewise continuous in t (i.e., instantaneous changes in the load 
are allowed at separate times) as a mapping of the segment [O, T] in the space L,, let the 
moduliE*, G be continous in t, piecewise continuous in x and Satisfy the estimates 

E, GE, G -G, G,< G < Gz, E,, Et, G,, G,= const > 0 

The relaxation kernels Ri are representable in the form 

Ri (t, t, x) = pi (t, 7, x)(t - T)-“f Pi (t, z, X)t a < 1 (1.6) 

where the pi, qt are bounded and continuous in t, r, piecewise continuous in x, and the func- 

tion x(x)is bounded and piecewise continuous. It is known /5/ that under these constraints 
there exists a unique generalized solution of the problem (l.l)- (1.5). From the manner of 
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the proof of this assertion in /5/ and the known results /6/ on the smoothness of the solu- 
tion of elliptic systems, there follows the local smoothness of the solution of the creep 
problem in the coordinates x in regularity subdomains of the right side and the rheofogical 
characteristics. 

2. For definiteness, we will study the solution in the neighborhood U of the right tip 
of the crack xs. It is assumed that the functions E,, G, pi, q, are smooth in the set of argu- 
ments t, r, X for t, z E [O, x1, XC? u. The functions fl are smooth in x for tE[O, Tl,XE u, 
and the functions gi* are smooth in X for t E 10, 2'1, X EU~ r*, where 

g (t, xg) 5 gi+ (2, XB) = gz- (t, XBL t E DA 27 (2.11 

(Here smoothness is understood to be the presence of a sufficient number of continuous deriva- 
tives, where it is assumed that the derivatives of the functions jr, gt with respect to the 
space coordinates are piecewise continuous in t as a mapping of the segment[O, T]in the space 
of continuous functions). Then the solution is smooth in the domain U\Ddr where Dd is a 

circle of radius d with center at Xs, and d is arbitrary. Let us select d such that Dldc U, 
and let us introduce a smooth cutoff function x(x) such that x = 1 for XE D8/, and x = 0 
for XzB& Let (r, 0) be polar coordinates with origin at XB and polar axis directed alongthe 
segment r such that the equalities 0 = 0 and 8 = 2n hold, respectively, on rm 

XB 

Let us introduce a notation for the rheological characteristics "frozen" at the cracktip 

Go (t) = G it + X (XB), XBI, E,“(t) = & it + z-f (XB), Xe] 

v zs (E, -2G),‘(2G+ZE,), kz3-4v 

Y’ (t) = Y [t + X (XB), Xs), k” (t) = k It + 1c (XB), XBl 

fti” (t, 7) = & it + % (XB), ‘c + x (XB), xB1 

Theorem. Under the assumptions made, asymptotic representations of the solutionofthe 
creep problem are valid (1 is the displacement of the body as a rigid whole) 

4 (0 glc6 + d2 ftf &e)l x (4 + 0 w + 16 X) 

~r(t,tl,=!l~~‘(t,e)li~I~ [Zk’(t) - 11 sine/Z + sin38/2 

$'(t, 0) - W'(t)+ 1]cos0/2 + cos38/2 II 

+r (a Jt. @I = 2G” (t)r""YB,(t)(6i2sin8/~ + l/~sin38/~) + 
& (G(5t~~~~ 812 + '/,COS 36,2)1 X (r) + o (1) 

WI (t, r, 8) = 2G” (t)r-“* IB, (t)(3/2sin e/2 - Ii2 sin3e/2) + 
BZ (t)(3/z COS e/2 - 3/2cos 36/2)1 % (r) -+ o (1) 

ore (6 r, 0) = 2G" (W"SIB, (Q(- cose12 + cos 30/2) + 
B,(t)binW2 - 3sin3012)lX (r) + o (1) 

12.2) 

(2.31 

The coefficients Ai (t) in (2.2) are determined in terms of C,(t) from the solution of 
a Volterra integral equation of the second kind 

I 1 

A* (t) + 2 li ; c3 u)1 s 2 (t, 7) Ai (r) dr - ( RI” (tv 7) 4 (7) d7 f 
0 < ; 

s I* “,“” @)I 1 z (t, r) [I - 3s” (T)] C$ (3.) d-i - 
0 

(2.4) 
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8 j I&“ (t, z) [v’(t) - v’(r)] c< (z) dz = 0 

0 

The coefficients Bt (t) in (2.3) axe expressed in terms of Ci(t) by the formuj.aS 

FOIDIU~~S (2.2) allow term-by-term differentiation. 

Remark lo. The ~pptotic repreSentationS(2.3) for the stresses agree with the corres- 
ponding repxesentations of the elastic problem /7,8/. 

20. If the kernels of volume and shear relaxation agree at the cracktip,andthePoisson*s 
ratio is vo i- eonst, then Ai=@ follows from (2.41, ana the representations (2.2) agree with 
the corresponding representations of the elastic problem. In the case of a homogeneous domain 
this result follows directly from theorems of N.Kh. Arutiunian /9- 11/. 

PrOOf. Let B be a Banach space, and let L-(0, t;B) denote the space of mappings z of 
the segment IO, tlinto B allotted by the norm 

Then from the assumptions made above, the imbeddings 

; ELL;r& T; L* @)I, Pi E L= I 0, 27 LP 6%l)1~ gt* fz L” (0 

; B 

follow. 
Let ut5 u&X, then the Vf agree with Ui in the domain I)& equal. zero outside D&, and 

are smooth outside the domain Ddh. Let utf(v) denote the stress of the creep problem that 
corresponds to the displacements v, i.e., those obtained by substituting v into (L.1) and 
(1.31, and by assumption we set Fi 5 -Utr,~(v) and Qi" = (his* (~1. Evidently the equalities 
Off (") = (IfI (u), PI =f* and Qi*= g$ are valid in the circle Ddlz and the functions F,, ana 
Qi* are smooth outside the circle Ddl,. 

The boundary a& of the circle D, makes right angles with W we "round off" these 
angles by inscribing small arcs , smoothly tangent to p&and aDed. 3%; contour Y obtained 
consists of segments of the crack edges, the round-off arc, and parts of the boundary 83,. 
The domain bounded by the contour y is denoted by m. 

The functions v, ai,( CQ(V) are a solution of the creep problem in the domain 0 for 
the volume loads F = (F,, f’,) and the surface loads Q =(Q1, Qn), where Qi = TQi* on Y n r*, 
ana Qi = 0 on r\ (r+ IJ I?). 

Let H{Q) denote the S.L. Sobolev space, and 11 v; Iik(Q) \\ the norm of the function * in 

H"(Q) - Following /12,13/, let V," (0) denote the space of functions v in 0 with the norm 

II “; ‘CIBk 04 Ii = ji II rfij-kv; Hj(o)((, k=O, 1, . . . 

where fi is a real number. We let 1JBII-%(y) denote the space of traces of functions from V,‘;(o) 

on y . 
For brevity, we write the equation of the creep problem in displacements in operator form 

Lv- LRv+F=O, XEO; Bv-B’v=Q, XE~ 12.5) 

Here L is the operator of the equilibrium equations of the instantaneous elastic problem, 
LR is an operator containing all the integral components, Bv is the instantaneous elastic 
surface stress vector, BRv are the integral components of the surface stress vector. 

As usual, we seek the solution of the problem (2.5) in the form of series 

v(t,r,O)= 5 vx(t,r,8) 
n=1 

(2.61 
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whose coefficients satisfy boundary value problems with the parameter t E IO, Tl 

LY'+F=% x~o; Bvl=Q, XE~ (2.7) 

Lv"+~'+lzO, x~o; Bv"=Q"-*, x~y, n=2,3,... (2.8) 

~"-1~ _ Lsvn-1, Q+I=B~,P-~ 

It is known /5/ that under the assumptions made the series (2.6) converges to a general- 
ized solution of the problem (2.5) in L"[O,T; H'(e)) 

The first term of the series is the solution of the instantaneously elastic problem, and 
the next terms are determined from the solution of the elasticity problem equations with right 
side dependent on the preceding approximation. It can be shown that the equilibrium condit- 
ions assuring solvability of the elasticity problem for each t are satisfied at each step. 

Let us examine the problem (2.7) for any tE IO, Tl under the assumption that F, Q are 

arbitrary effects satisfying the equilibrium conditions, that are representable in the form 

F = r-%n (A# + A&*)X Jr F* (2.9) 

(A,, 4, al, a2 are constants). The solution is determined to the accuracy of the body displace- 
ment as a rigid whole, hence, we impose the additional constraints 

Svdo=O, Srotvdo=O (2-10) 
0 0 

The following result holds, which follows from /12,13/ (a sufficiently detailed inter- 
pretation of the results of /12,13/ on general elliptic boundary value problems in domains 
with conic points as applied to elasticity theory is contained in /14,15/j. The problem (2.71, 
(2.10) under the conditions (2.9) is solvable uniquely, and the solution is representable in 
the form 

v =rS/. (c,q + C&P+ d&'-F. &E')x -t-l(x) $91, wEV%+) (2.11) 

1, (x) = a, -+- bx,, 1, (x) = ap - bxl 

wherec,, C,, a,, a2, b are constants, and the following estimate is valid 

(2.12) 

Here and henceforth,the letter Cwill denote different constants dependent just on the 
domain w, the number 6, and the operator coefficients. We note that 
placement as a rigid whole, 

l(x) is the body dis- 
so that the operators L, La, B, Ba vanish on 1 

We consider the first step in the iteration process. 
imbedding, FEJ'_~~(o) holds for any S<l. 

Because of the smoothness of F the 

the order 0 (r), and hence, 
Because of (2.1), the difference Qi*-gi is of 

(2.7) have the form of (2.9) 
belongs to V_,“is(y) for any 6 < 1. Therefore the right sides in 

A, = A, = 0, CL~ = g, (t), Qt* = -Q1 + a,xcos6/2, Qe* = -Q2 + a,x eos 812 

According to 
form 

and the following 

(2.11) and (2.12) for YtE IO,T] , the solution ~1 is representable in the 

vl;=:@ (CI’tp’ + c&&*)x -+ 1’ + x=.-l (2.13) 

t,l = al1 + blx,, 1,’ = a z1 - blx, 

estimate is valid 
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There follows from this estimate that 

(2.14) 

The finiteness of the quantity 1 introduced in (2.14) follows from the assumption about 
the piecewise continuity of the loads in time. 

Before considering the second step in the iteration process, we present some auxiliary 
calculations. 

We let L", Lp,B”,Bp denote the principal parts of the operators L, Ls, B,BR with coef- 
ficients frozen in xg . It can be verified that the relationships 

(2.15) 

I-v' 1&2k” 2 --va 
a=-. &k= 2(i-2P) ’ y ===i--2v” 

hold for functions of a special kind, namely ur = m, (t, @jr’!‘, Ue = Ye(t, @et* 
The dot in (2.15) denotes differentiation with respect to e1 while Nand S are integral 

operators given by the formulas 

Nq,@, et =s Rl"@, 7) tp("c, f&d% Srp(r,8)=SZ(t,r,8,(~,0)dr (2.16) 

" 0 

We note that the second expression in (2.15) for LR" consists of two terms, the firstof 
which can be obtained formally from the first expression in (2.15) for L" by replacing the 
functions qI,ma by the functions Nrp, and Nme. Similarly for the last two representations 

in (2.15) for BP and B". This circumstance facilitates the calculations. 
Let C,(t), C!,(t) be arbitrary functions of the time. Calculations utilizing (2.15) show 

that 

LR*(r‘~~Cllgt)=~,~IWC161, BR" (r*M',~')== 0 (2.17) 

Writing Ngrp(t) means that the operator Ngiven by (2.16) is evaluated on the product of 

the functions g and T. 

The assertion, proved exactly in the same mannex as in Lemma 1 in /5/, is valid. 
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Lemma. Let 

Then for VtE to, T1 

For the second step in the iteration process (2.7) and (2.8) it is necessary to evaluate 

w E L” IO, T; V_,2(0)1, q E L” (0, T, w. 
the estimates hold (a is the exponent from condition f1.6)) 

llLRw(t, a), l.-d(0)119c~~t-~)-=IIW(T. *I, %WlldT 
(2.18) 

0 

Fl, Q1 and to represent them in a form analogous to (2.9) 

Taking account of (2.13) and (2.17), we obtain from the definition of F1 

F1 = - LR (r’l*Xlx + lx+ w’) = 

- LR (r”WX) - LR (w”) + LR’ (r’W) x - 

LR” (r’m’) x= - r”qMC,l~1+ ~C~l~~ x + FL’ 

F*‘=- LR (w’) + LR’ (r’/W) x - LR (r”W~), Z’ = Cl'@ + c*'*z 

(2.21) 

(2.22) 

We set Ai1 = -melMCtl. For 6 < aJa the following inequality is valid 

II F*'& a), &@) II <C i@- rPIIl vl(z, .fIlldr 
(2.23) 

An estimate of the first term in the expression for F*l results from (2.18). Because of 
the smoothness of the coefficients, the difference between the true rheological characteris- 
tics and those frozen at the crack tip is of the order of r, hence, the difference between 
the highest terms of the second two components is of the order rA': i.e.,belongs to the space 
rl_,= for ii<-+V,. Therefore, in compliance with the lemma, the difference LR’-LR in the ex- 
pression for ~"1 will also not exceed the right side of (2.23). 

Taking account of (2.13) and (2.17), we obtain from the definition of Ql 

Ql = BR (r’laX1x -f- 1’ + w*) = BR (r’l&k) + 12.24) 

BR (~1) + B”” (r’W2) x - BR” (r’EP) x = 

The next inequality has 
instead of (2.18)) 

Q*l = BR (WI) + BR (r’Wx) - BR” (r’@) x 

exactly the same foundation as (2.23) fwith satisfactionof (2.19) 

Thus, the right side of F1, Q’ are represented in the second step of theiterationprocess 
in the form of (2.9): 

_Ji = A,” s -_m-l&fCil, ai = 0, i = I 2, F* = F”, Q* = Q”’ 

We conclude from (2.26) and (2.20) that 

(2.26) 

The representations for vz and the estimates for l#v2(t,.)jjl follow from (2.11) and (2.12): 
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(2.28) 

(2.29) 

Collecting the estimates (2.231, (2.25), (2.27) and 12.291 together, we obtain the in- 
equality 

Ill v* @, -) 111 G c 5 (t - r)- 1)) v1 (7, -) 111 dz (2.30) 
” 

We now consider the third step in the iteration process. Compared with (2.13)) the form- 
ula (2.28) contains two terms of a new kind, namely, the vectors gt, i = 1,2 are present in 
the principal part. Calculations utilizing (2.15) show that 

LR’ (r’/zAl%l) s r-'/~DA161, BR” (r'/~Al%l) = 0 

Ls' (r*hA&*) = r-‘l*DA2g2, BRa (r’l*A#) 
=I 2r-&A2' ji 

(2.31) 

Here D is an integral operator of the form 

Dq (0 = - mNy, (1) + -y- sq, (t) (2.32) 

Further calculations are a literal duplication of the process indicated in the second 
step with the difference that in the representations of the right sides of p, Q", analogous 
to (2.211, the coefficients A1*are expressed by the formula 

Ai2 = --m-l (MCtZ - L)Ail), i = 1, 2 (2.33) 

The equality (2.33) generalizes (2.26); in addition to (2.171, also (2.31) was utilized 
in its derivation. 

We consequently obtain a representation for v" and an estimate for 

of Ill v* (4 *I III: 
111 vS (t, +) III in terms 

VJ = r’ls (C&t1 + C&I~ f AtaS f Ass%*) y. + 1’ + w3 (2.34) 

Ill vs fh * 1 III < c f (t - Va II1 v* (z, .I ill d7 
I) (2.35) 

The next steps in the process are considered exactly as was the third step, hence, the 
following assertions are valid, in compLete analogy to (2.34), (2.33) and (2.35):thesoLution 
vn is representable in the form 

v”=r’~:(Cl*tp~ + C,“lpz+ AT-‘%l+ Ate’_‘52fx + F+w”, n-33,4, . . . 

4 a = aln + &%2, I,” = a ‘& $ - VXl 

where the coefficients Ai"- are defined by the recursion formulas 

A."-1 =; -_m-' (MCin-l + DAin-2), i = 1, 2, n = 3, 4,. . . 1 (2.36) 

and the following estimate holds 

Ill v” 6 *f Ill = $I,( I G” (4 I h 1 A afn W 1 )+l~*(~)l+ll w*(G*f, V% (4 II < 

CSV - q-a 111 v-1 (2, .) 111 d,c, n = 3,4, . . . 
0 

f2.37) 

The inequalities (2.30) and (2.37) are the fundamental relationships for the proof of 
the theorem. 

We conclude from (2.30) and (2.14) that 
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,,,vyt, .),,,<C ((t-q-adrl(T) =$Z(T), f.J= l--a (2.38) 
0 

We introduce the integral 

I, (4 = f z"B(t--)~dr=D,tc"+')e, D,,z r (8) r @St- 1) 
r[(n+l)B+~l 

0 

(2.39) 

Substituting (2.38) into (2.37) for n=3 and utilizing the definitions (2.39),we find 

Applying (2.37) successively for n = 4, 5, . . ., we arrive at the estimate 

According to Lemma 5 in /5/, a series with the counnon term equal to 
(2.40) will converge for any t. The convergence of the series with the 
b" A.n 1 I1 w" , hence follows, which proves the representation (2.2), where 

Cl(t)= jl Cl" (t), At (t) = il A," (t), al(t)= zl=? @)* i= i* 2 

b(t) =nl, b"($ 

(2.40) 

the right side in 
common terms Gin, afn, 

(2.41) 

To prove (2.4), we sum (2.36) over n = 3, 4,.. . and we append (2.261, and taking account 
of (2.41) we obtain the equation 

Ai = -m’ (MCI + DA,), i = 1, 2 (2.42) 

Utilizing the definition of the operators (2.16) and (2.321, and the notation for m in 
(2.91, it can be confirmed that (2.42) and (2.4) are in agreement. 

Formulas (2.3) are obtained by direct substitution of (2.2) into (1.1) and (1.3). The 
theorem is proved. 
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